Al-Balqa University Faculty of Engineering

Student Name:
 Student Number:

Dept. of Electrical power Engineering Mid-term Exam, Second Semester: 2016/2017

Course Title: Electric Power systems Analysis 1
Course No: (315020481)
Date: 26/3/2017
Time Allowed: 90min.
Lecturer: Dr's. Audih \& Rami

Ouestion1:

[10marks]

Objective: Solve and chooses the correct answer

1) Y-connected load consisting of three identical impedance of $20 / 30^{\circ} \Omega$ supplied by $4.4 \mathrm{kV} \mathrm{VL}_{\mathrm{LL}}$, the line impedance which supply the load is $\mathrm{Z}_{\mathrm{L}}=1.4 / 75^{\circ} \Omega$, the magnitude of voltage line to neutral at substation is:
(a) 4620 V
(b) 2669 V
(c) 1542 V
(d) None
2) In a balanced three-phase system with positive sequence ,the Y-connection impedances are $10<30^{\circ} \Omega$, if $\mathrm{V}_{\mathrm{bc}}=416<90^{\circ} \mathrm{V}$, the current I_{cn} is
(a) $24.0<-90^{\circ} \mathrm{A}$
(b) $24.0<30^{\circ} \mathrm{A}$
(c) $24.0<120^{\circ} \mathrm{A}$
(d)None
3) If $\mathrm{N}_{1}=500$ and $\mathrm{N}_{2}=2000$ turns in single-phase transformer with $\mathrm{V}_{1}=1200<0$ and $\mathrm{I}_{1}=5<-30^{\circ} \mathrm{A}$ the impedance Z_{2} is:
(a) $3840<30^{\circ} \Omega$
(b) $15<30^{\circ} \Omega$
(c) $240<30^{0} \Omega$
(d)None
4) The reactance of a generator designated is 0.25 pu . at base rating of $18 \mathrm{kV}, 500 \mathrm{MVA}$ the new reactance in pu. base of 20 kV and 100 MVA is:
(a) 0.25 pu
(b) 0.0405 pu
(c) 0.0617 pu
(d) None
5) An inductive load consisting of R and X in parallel feeding from 2.4 kVrms supply as in figure, absorbs 288 kW at a lagging power factor of 0.8 . the reactance X value in ohm is :
a)26.7
b) 20
c) 17.42
d)24.4

Question 2:
(10Marks)
Objectives: General Understanding the concepts of power system.
Full in the blanks either True or False for the following:
(one mark each point)

1) In three phase system we can control the rotation direction of the machine by increasing reactive power.

False

2) Since the current $\mathrm{I}_{\mathrm{ab}}=\mathrm{I}_{\mathrm{ba}}$ then the magnitude of V_{ab} is equals to V_{ba} True
3) The delta impedance of three phase load is three times of Y connection
4) when the current lead voltage then the power factor is lagging
5) If reactive power is with negative sign, then the circuit absorbs reactive power from the network.
6) For transformers the p.u. of impedances for primary is a half of secondary sides.
7) The impedance base in Ω when power is $k V A$ and the voltage in $k V$ is equal to $\frac{V^{2}}{V A}$

False
8) The voltage of power system is controlled by excitation field of generator.
9) In ideal transformer the leakage flux $=\infty$

False

10) The self geometrical main distance of circle adjusts the radius in order to account for internal flux for solid conductor.

True

Question3:

[10marks]

Objective: This question is related to per-units quantities

In the schematic diagram of radial three- phase transmission system which contains the reactance of various component as showing in figure, along with the normal transformer line voltage .A load of 50 MW at 0.8 p.f. leading is taken from the 33 kV substation which is to be maintained at 30 kV . Calculate:
a) The terminal voltage of the synchronous machine.
(7marks)
b) Represent the line and transformers by series reactance in per-unit
(3marks)

Question4:
[10marks]

Objective: This question related to inductance of transmission lines

A single-circuit 60 Hz three-phase transmission transposed line is composed of four ACSR conductor per phase with horizontal configuration as shown in Figure. The bundle spacing is 45 cm . The conductor 3.5103 cm and GMR of 1.4173 cm .

1 - Determine the inductance per phase per kilometer of the line.

2- If the composed bundle is changed with three conductor per phase with same spacing, what is the new inductance per pahse/km. (5marks)

Q3 Solution:

$V_{s}=I Z+V_{R}$
We select $S_{\text {base }}=50 \mathrm{MVA}$,
$V_{\text {base (gene.) }}=11 \mathrm{kV}, V_{\text {base (line) }}=132 \mathrm{kV}, V_{\text {base (load })}=33 \mathrm{kV}$
a) $\Omega_{\text {base }}=\frac{(k V)^{2}}{M V A}=\frac{(132)^{2}}{50}=348.48 \Omega$
$\left|I_{\text {base }}\right|=\frac{S_{\text {base }}}{\sqrt{3} \cdot V_{\text {base }}}=\frac{50 \times 10^{6}}{\sqrt{3} \times 33 \times 10^{3}}=874.77 \mathrm{~A}$
(note the angle base neglected), but in
actual value is taken $a \mathrm{~s} \cos ^{-1}(0.8)=+36.8^{\circ}$ leading
$I_{\text {load }}=\frac{P}{\sqrt{3} \cdot V_{L L} \cdot \cos \phi}=\frac{50 \times 10^{6}}{\sqrt{3} \times 30 \times 10^{3} \times 0.8}=1203 \angle 36.8^{\circ} \mathrm{A}$
$I_{\text {load }(p u)}=\frac{\text { acuate }}{\text { base }}=\frac{1203 \angle 36.8^{\circ}}{874.77}=1.375 \angle 36.8^{\circ}$
No change reactance base since 50MVA is same as old
$X_{\text {pu, new }}=X_{p u, \text { old }} \times\left(\frac{S_{\text {base }, \text { new }}}{S_{\text {base }, \text { old }}}\right) \Rightarrow X_{T_{1}(p u)}=j 0.1 \times\left(\frac{50}{50}\right)=j 0.1$
$X_{T_{2}(p u)}=j 0.12 \times\left(\frac{50}{50}\right)=j 0.12$
$X_{\text {line }}=\frac{\text { actuale }}{\text { base }}=\frac{j 100}{348.48}=j 0.287$
At the bus load the voltage base is $33 \mathrm{kV} \Rightarrow$ The per - unit voltage $=$
$=\frac{\text { actuale }}{\text { base }}=\frac{30 \mathrm{kV}}{33 \mathrm{kV}}=0.91$
$V_{s}=I Z+V_{R}=1.375 \angle 36.8^{0} \times(j 0.287+j 0.12+j 0.1)+0.91=0.744 \angle 48.6^{\circ}$
** if the base $S=100 M V A$ then
$\Omega_{\text {base }}=\frac{(k V)^{2}}{M V A}=\frac{(132)^{2}}{100}=174.24 \Omega$
$\left|I_{\text {base }}\right|=\frac{S_{\text {base }}}{\sqrt{3} \cdot V_{\text {base }}}=\frac{100 \times 10^{6}}{\sqrt{3} \times 33 \times 10^{3}}=1750 \mathrm{~A}$
$X_{T_{1}(p u)}=j 0.1 \times\left(\frac{100}{50}\right)=j 0.2$
$X_{T_{2}(p u)}=j 0.12 \times\left(\frac{100}{50}\right)=j 0.24$
$X_{\text {line }}=\frac{\text { actuale }}{\text { base }}=\frac{j 100}{174.24}=j 0.574$
$I_{\text {load }(p u)}=\frac{\text { acuate }}{\text { base }}=\frac{1203 \angle 36.8^{\circ}}{1750}=0.687 \angle 36.8^{0}$
$V_{R}=\frac{30 k V}{33 k V}=0.91$
$V_{s}=I Z+V_{R}=0.687 \angle 36.8^{0} \times(j 0.574+j 0.24+j 0.2)+0.91=0.744 \angle 48.6^{\circ}$
b)

Question4:

$$
G M D=\sqrt[3]{(14)(14)(28)}=17.63889 \mathrm{~m}
$$

and From (4.53) and (4.90), we have

$$
G M R_{L}=1.09 \sqrt[4]{(1.4173)(45)^{3}}=20.66 \mathrm{~cm}
$$

and from

$$
L=0.2 \ln \frac{G M D}{G M R L}=0.2 \ln \frac{17.63889}{0.2066}=0.889 \mathrm{mH} / \mathrm{Km}
$$

