### Al-Balqa University Faculty of Engineering



# **Student Name: Student Number:**

## Dept. of Electrical power Engineering Mid-term Exam, Second Semester: 2016/2017

|                                                                                                                                                                                     | Course Title: Electric Power systems Analysis I                                       |                                                      | Date: 26/3/2017                        |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------|--|
|                                                                                                                                                                                     | Course No: (315020481)                                                                |                                                      | Time Allowed: 90min.                   |  |
| I                                                                                                                                                                                   | Lecturer: Dr's. Audih & R                                                             | ami                                                  | No. of Pages: 2                        |  |
| Question1: [10marks]                                                                                                                                                                |                                                                                       |                                                      |                                        |  |
|                                                                                                                                                                                     | ective: Solve and chooses th                                                          |                                                      | (2marks each one)                      |  |
| 1) Y-connected load consisting of three identical impedance of $20/30^{\circ}\Omega$ supplied by 4.4 kV <sub>LL</sub> ,                                                             |                                                                                       |                                                      |                                        |  |
|                                                                                                                                                                                     |                                                                                       | pply the load is $Z_L=1.4/75^{\circ}\Omega$ , the    | ie <b>magnitude of voltage line</b> to |  |
|                                                                                                                                                                                     | neutral at substation is:                                                             |                                                      | (4) 3-                                 |  |
|                                                                                                                                                                                     | (a) 4620V (b) 2669                                                                    |                                                      |                                        |  |
| 2)                                                                                                                                                                                  |                                                                                       | stem with positive sequence ,th                      | e Y-connection impedances are          |  |
|                                                                                                                                                                                     | $10 < 30^{\circ} \Omega$ , if $V_{bc} = 416 < 90^{\circ} V$ , the current $I_{cn}$ is |                                                      |                                        |  |
| 2)                                                                                                                                                                                  |                                                                                       | $1.0 < 30^{0} A$ (c)24.0 < $120^{0} A$               |                                        |  |
| 3) If $N_1=500$ and $N_2=2000$ turns in single-phase transformer with $V_1=1200 < 0^0$ and                                                                                          |                                                                                       |                                                      |                                        |  |
|                                                                                                                                                                                     | $I_1 = 5 < -30^{\circ} A$ the impedance 2                                             |                                                      | (4) 1                                  |  |
| 1\ T                                                                                                                                                                                |                                                                                       | $<30^{0}\Omega$ (c) $240<30^{0}\Omega$               | · /                                    |  |
| 4) The reactance of a generator designated is 0.25pu. at base rating of 18kV,500MVA the new reactance in pu. base of 20kV and 100MVA is:                                            |                                                                                       |                                                      |                                        |  |
| 1                                                                                                                                                                                   | <u> </u>                                                                              |                                                      | (d) Nana                               |  |
| 5) 4                                                                                                                                                                                | ` ' 1                                                                                 | 05pu (c) 0.0617pu (c) of P and Y in perallal feeding | ` /                                    |  |
| 5) An inductive load consisting of R and X in parallel feeding from 2.4kVrms supply as in figure, absorbs 288 kW at a lagging power factor of 0.8. the reactance X value in ohm is: |                                                                                       |                                                      |                                        |  |
| ]                                                                                                                                                                                   | inguie, ausoros 200 k vv at a la                                                      | agging power ractor or 0.6. the r                    | Ŷ <i>I</i>                             |  |
|                                                                                                                                                                                     | a)26.7 b)20                                                                           | c)17.42                                              | d)24.4                                 |  |
|                                                                                                                                                                                     | -)                                                                                    | -/                                                   | []                                     |  |
| <u>Que</u>                                                                                                                                                                          | estion 2:                                                                             |                                                      | (10Marks)                              |  |
| Objectives: General Understanding the concepts of power system.                                                                                                                     |                                                                                       |                                                      |                                        |  |
| F                                                                                                                                                                                   | ull in the blanks either <b>True</b> o                                                | or False for the following:                          | (one mark each point)                  |  |
|                                                                                                                                                                                     |                                                                                       |                                                      |                                        |  |
| 1)                                                                                                                                                                                  | In three phase system we ca                                                           | an control the rotation direction                    | of the machine by                      |  |
|                                                                                                                                                                                     | increasing reactive power.                                                            | False                                                |                                        |  |
|                                                                                                                                                                                     |                                                                                       |                                                      |                                        |  |
| 2)                                                                                                                                                                                  | Since the current $I_{ab}=I_{ba}$ then                                                | the magnitude of $V_{ab}$ is equals                  | to V <sub>ba</sub> True                |  |
| -                                                                                                                                                                                   |                                                                                       |                                                      | . [                                    |  |
| 3)                                                                                                                                                                                  | The delta impedance of three                                                          | e phase load is three times of Y                     | connection True                        |  |
| 45                                                                                                                                                                                  |                                                                                       | a than the name factor is 1                          | g False                                |  |
| 4)                                                                                                                                                                                  | when the current lead voltag                                                          | e then the power factor is laggin                    | g                                      |  |
| 5)                                                                                                                                                                                  | If reactive power is with                                                             | nagative sign than the simplify                      | absorbs reactive                       |  |
| 5)                                                                                                                                                                                  | <del>-</del>                                                                          | negative sign, then the circuit                      | ausorus reactive                       |  |
|                                                                                                                                                                                     | power from the network.                                                               | False                                                |                                        |  |
| 6)                                                                                                                                                                                  | For transformers the p.u. of i                                                        | impedances for primary is a half                     | f of secondary sides. False            |  |
| 0)                                                                                                                                                                                  | Tot manifestiness the p.a. of                                                         | impodumoes for primary is a man                      | Talse                                  |  |

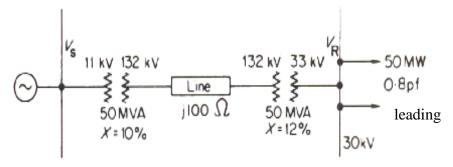
- 7) The impedance base in  $\Omega$  when power is kVA and the voltage in kV is equal to  $\frac{V^2}{VA}$  False
- 8) The voltage of power system is controlled by excitation field of generator.

True

- 9) In ideal transformer the leakage flux= $\infty$  False
- 10) The self geometrical main distance of circle adjusts the radius in order to account for internal flux for solid conductor.

Question3: [10marks]

#### **Objective: This question is related to per-units quantities**

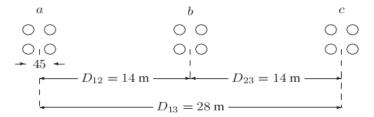

In the schematic diagram of radial three- phase transmission system which contains the reactance of various component as showing in figure, along with the normal transformer line voltage .A load of 50MW at 0.8p.f. **leading** is taken from the 33kV substation which is to be maintained at 30kV. Calculate:

a) The terminal voltage of the synchronous machine.

(7marks)

b) Represent the line and transformers by series reactance in per-unit

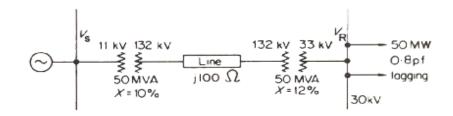
(3marks)




Question4: [10marks]

#### Objective: This question related to inductance of transmission lines

A single-circuit 60 Hz three-phase transmission transposed line is composed of four ACSR conductor per phase with horizontal configuration as shown in Figure . The bundle spacing is 45 cm. The conductor 3.5103cm and GMR of 1.4173cm.


1- Determine the inductance per phase per kilometer of the line.



2- If the composed bundle is changed with three conductor per phase with same spacing ,what is the new inductance per pahse/km. (5marks)

Good luck

Q3 Solution:



$$V_{s} = IZ + V_{R}$$

We select 
$$S_{base} = 50MVA$$
,

$$V_{base\,(gene.)} = 11kV$$
 ,  $V_{base\,(line)} = 132kV$  ,  $V_{base\,(load\,)} = 33kV$ 

a) 
$$\Omega_{base} = \frac{(kV)^2}{MVA} = \frac{(132)^2}{50} = 348.48\Omega$$

$$|I_{base}| = \frac{S_{base}}{\sqrt{3}V_{base}} = \frac{50 \times 10^6}{\sqrt{3} \times 33 \times 10^3} = 874.77A$$

(note the angle base neglected), but in

actual value is taken as  $\cos^{-1}(0.8) = +36.8^{\circ}$  leading

$$I_{load} = \frac{P}{\sqrt{3}V_{II}.\cos\phi} = \frac{50 \times 10^6}{\sqrt{3} \times 30 \times 10^3 \times 0.8} = 1203 \angle 36.8^{\circ} A$$

$$I_{load (pu)} = \frac{acuate}{base} = \frac{1203 \angle 36.8^{\circ}}{874.77} = 1.375 \angle 36.8^{\circ}$$

No change reactance base since 50MVA is same as old

$$X_{pu,new} = X_{pu,old} \times \left(\frac{S_{base,new}}{S_{base,old}}\right) \Rightarrow X_{T_1(pu)} = j \cdot 0.1 \times \left(\frac{50}{50}\right) = j \cdot 0.1$$

$$X_{T_2(pu)} = j \, 0.12 \times \left(\frac{50}{50}\right) = j \, 0.12$$

$$X_{line} = \frac{actuale}{base} = \frac{j100}{348.48} = j0.287$$

At the bus load the voltage base is  $33kV \Rightarrow The per-unit voltage =$ 

$$=\frac{actuale}{base} = \frac{30kV}{33kV} = 0.91$$

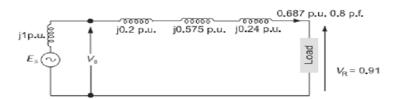
$$V_s = IZ + V_R = 1.375 \angle 36.8^{\circ} \times (j \cdot 0.287 + j \cdot 0.12 + j \cdot 0.1) + 0.91 = 0.744 \angle 48.6^{\circ}$$

\*\* if the base S = 100MVA then

$$\Omega_{base} = \frac{(kV)^2}{MVA} = \frac{(132)^2}{100} = 174.24\Omega$$
$$|I_{base}| = \frac{S_{base}}{\sqrt{3}.V_{\bullet}} = \frac{100 \times 10^6}{\sqrt{3} \times 33 \times 10^3} = 1750A$$

$$X_{T_1(pu)} = j0.1 \times \left(\frac{100}{50}\right) = j0.2$$

$$X_{T_2(pu)} = j0.12 \times \left(\frac{100}{50}\right) = j0.24$$


$$X_{line} = \frac{actuale}{base} = \frac{j100}{174.24} = j0.574$$

$$I_{load(pu)} = \frac{acuate}{base} = \frac{1203\angle 36.8^{\circ}}{1750} = 0.687\angle 36.8^{\circ}$$

$$V_{R} = \frac{30kV}{33kV} = 0.91$$

$$V_s = IZ + V_R = 0.687 \angle 36.8^{\circ} \times (j0.574 + j0.24 + j0.2) + 0.91 = 0.744 \angle 48.6^{\circ}$$

b)



#### Question4:

$$GMD = \sqrt[3]{(14)(14)(28)} = 17.63889 \text{ m}$$

and From (4.53) and (4.90), we have

$$GMR_L = 1.09\sqrt[4]{(1.4173)(45)^3} = 20.66$$
 cm

and from

$$L = 0.2 \ln \frac{GMD}{GMRL} = 0.2 \ln \frac{17.63889}{0.2066} = 0.889 \text{ mH/Km}$$